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Abstract. In this work Named Entity Recognition (NER) using Memory-
Based Learning (MBL) is presented. This application is based on sev-
eral works that deal with this topic. Our contribution is the analysis of
some feature sets, taken from POS, capitalized, context, and without
external information sources, in order to constitute the training set for
the learning method. In the experiments the corpus from the CoNLL-02
conference was used, and for tag identification 96.14% of precision was
reached using just 14 features.
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1 Introduction

Named entities (NE) are phrases that contain persons (PER), organizations
(ORG), locations (LOC), dates and quantity names (MISC)[1]. For example, in
the following clause there are tags that identify the NE that occur in it:

[PER Fernando Lozano ], presidente de [LOC Valle Alto], llegó al [MISC
XXI Torneo Universitario].

[PER Fernando Lozano ], president of [LOC Valle Alto], arrived at the
[MISC XXI Universitary Tournament].

Named entity recognition enriches text representation, and it could be applied

to tasks supporting Natural Language Processing. As an example, in Question-

Answering Systems the responses to questions using pronouns such as where,
who, etc. could be supported by NE.

In this work we are focussing on NE of the classes PER, ORG, LOC and

MISC. A NE tagger using few linguistic resources and tools, but having a high

degree of precision is of particular interest. Nevertheless, to recognize the whole

NE occurring in a text is not very important to us. Since we need the building
blocks to construct a NE database within of a journalistic navigational system;

hence our interest on just precision.
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must adopt the features of test 4, which has recall 49.72% and precision 92.48%.

Average standard measurements for the tests are shown i
n Table 2.

Table 2. Performance for each feature s
et.

Experiment P R F

1 89.53 40.69 55.95

2 90.07 46.77 61.57

3 93.11 52.51 67.15

4 92.48 49.72 64.67

5 88.76 37.15 52.37

In order to situate the results, we did 10 cross validation tests on the de-

velopment set, and we shall cite the results, about tag identification, presented

in the CoNLL-02. The purpose of this comparison is to know how much is lost

when some features are omitted (for example, POS), because we are just taking

features we are interested in 14 features (experiment 4), and do not need a POS

tagger. The averaged measures were R = 70.71, Р = 95.89, and F₁ = 81.39. The

classification on the development set without cross validating got R = 69.8,

P = 96.14, and F₁ = 80.87. Our classification is better than the one pre-

sented in [12] (F₁ = 74.34). Both took place under the same conditions (test

set, learning method, and cross validating). Nevertheless, Carreras et al. result

[11] (F₁ = 91.66) is better than ours.

5 Conclusions

We have shown the results on the efficacy of different sets of features, used in

NER by the MBL method, on a collection from the CoNLL-2002 conference. The

experiments are based on the combination of basic features: word context (three

words before and after), the POS of words in the context, and the presence of a

capital letter at the beginning of the words in the context.

We see that contextual and some morphological features are very helpful in
classifying tags for NER. Other authors have referred that external information

sources are almost useless. In this work we have seen that, omitting the POS of

contextual words does not impact the precision in identifying tags for NER: the

maximum precision gotten in CoNLL-02 [11] was 92.45 against our result 96.14

reached using just 14 features. Certainly, our recall is very poor (90.88 by them
against 69.8 by us), because of the reduced number of features that we used.
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